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Abstract-The dynamical behaviour of a simply supported, orthotropic, circular plate subjected to strong
blast is considered. The blast is assumed to impart an axisymmetric transverse, velocity which has a general
Gaussian distribution spatially. It is concluded that the rate of growth of plastic regimes and the final plastic
deformation strongly depend upon the initial Gaussian distribution parameter.

NOTATION
b radius of circular plate
a (l!V'(2)S), S being standard deviation
c a.b

gr radial curvature rate
g, circumferential curvature rate

Mr. resultant yield moment in radial direction
M,o resultant yield moment in circumferential direction

K (M,o/Mr.)

Mr resultant radial bending moment
M, resultant circumferential bending moment
r, (J radial, circumferential plate co-ordinates

t time
t* time of cessation of all plate motion
t I time at which hinge circle radius has decreased to zero

W(r, t) plate deflection in transverse direction
W(r, t) plate velocity

W' permanent plate deflection
Vo W(O, 0)

8(t) Dirac 6-function
p, mass per unit area of plate material'

p(t) radius of hinge circle
po initial position of hinge circle at t = 0
PI position of hinge circle at t =t1

I. INTRODUCTION

Theoretical and experimental investigations into inelastic response of engineering structures
under high intensity short duration loads are necessary in order to permit reliable predictions of
structural damage, to automobiles, aircraft, spacecraft and high speed marine craft which is
sustained during collisions, the safety of pressure vessels which contain nuclear reactors and to
develop energy absorbing devices for various applications. Dynamical bending of perfectly
plastic, thin circular plates has received considerable attention in the last two decades. A simple
formula for permanent central deflection of a simply supported circular, isotropic, rigid-plastic
plate caused by a uniformly distributed impulse was obtained by Wang[l] using the theory of
Hopkins and Prager[2]. The influence of different boundary conditions and various axisymmetric
dynamic loads with arbitrary time history on the behaviour of perfectly plastic, circular plates has
been further studied by Perzyna[3], Shapiro [4], Florence [5], Thomson[6J and Conroy[7J. Other
investigations taking into account the strengthening effects due to strain-rate sensibility and
membrane forces include those of Perrone [8], Florence [9J, Duffey [10J, Wierzbicki [tIJ and
Jones [I2]. Mazalov and Nemirovskii[l3] have investigated the dynamical behaviour of
piece-wise non-homogeneous plates under uniformly distributed pressure pulse. Numerous
references for works done in this field can be found in survey paper by Jones et al. [14].

It is clear from the above review that most of the studies so far have been concentrated on the
dynamic deformation of isotropic circular plates under axisymmetric pressure pulse.

The present paper is concerned with the response of a simply supported, orthotropic circular
plate under a strong blast. The blast is assumed to impart a transverse velocity which is
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axisymmetric with a general Gaussian distribution spatially. The material of the plate exhibits
polar orthotropy flowing according to modified Tresca yield condition and associated flow
rules [15]. Only the bending action of the plate is considered. The effects of geometry changes are
neglected.

2. FUNDAMENTAL EQUATIONS

Consider a thin circular plate simply supported along its edge and subjected to a strong blast
at time t =O. The blast imparts a velocity which has a Gaussian distribution (Fig. I) given by

The dynamic equilibrium equations governing the rigid plastic behaviour of the plate is

d ir

••dr (rMr) == Mo+ 0 JL Wr dr

subjected to the boundary conditions

A!.r(b, t): 0 }
W(b, t) - O.

(1)

(2)

(3)

Two different cases of orthotropy are of practical interest.
(1) The resultant yield moment in the radial direction being greater than that in the

circumferential direction. (Mro > Meo)
(2) The resultant yield moment in the circumferential direction being greater than that in the

radial direction. (Moo> Mro)
The yield conditions and associated flow rules for the above cases of orthotropy are

(Figs. 2, 3).

Regime A
Mr = Me == Meo
Kr=O
Ko~O

Case 2. (M88 > Mro)

Regime AB
O,,;;Mr ,,;;Moo

Kr=O
Ke~O

-r

RegimeBC
O<Mr<Mro
Me=Moo
Kr=O
Ko~O
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Fig. 1. Gaussian velocity distribution. Fig. 2. Modified Tresca yield condition «M", > Moo).
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Fig. 4. Modes of deformation.

3. MODES OF DEFORMAnON

Case 1. (Mro >MBo)

When the blast is imparted to the plate at time t =0, the plate gets divided into two different
plasticity regimes A and AB (Fig. 2) with a hinge circle located at the radius po (Fig. 4). For time
t > 0, the hinge circle starts moving towards the centre of the plate. At time t =t. the hinge circle
shrinks to the centre of the plate. The plate continues to deform in the form of an inverted cone
until all the kinetic energy imparted to the plate by the blast is completely dissipated by plastic
deformation and the plate comes to rest at time t = t*.

Case 2. (MBo >Mro)

The first phase of deformation of this type of plate is similar to the one discussed in Case 1
except that at time t = t. the hinge circle has radius p. given by the following equation

2(IY(K -1) - 3(Ir+K - 1= O. (4)

The plate continues to deform in the form of a truncated cone with an inner rigid portion of
radius P•. At time t = t* the velocity of the plate becomes zero everywhere and the plate comes
to rest giving a permanent deformed shape.

4. SOLUTION

Case 1. (Mro >MBo)

The solution is obtained separately for the two phases of deformation described above.

Phase 1. (0 ~ t ~ t.)
The velocity profile satisfying the flow rule, boundary conditions and appropriate continuity

and discontinuity conditions [2] is

for o~ r ~p(t) 5(a)

w- v: _a 2p 2 b - r
- oe b - p(t)

5(b)

Using eqn 5(b) and (2) with (3) the differential equation for the motion of hinge circle is obtainedas

(6)
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The solution of eqn (6) gives the position of hinge circle at any time" t". In a non-dimensional
form it can be expressed as

where

S;+K;S;+K;
t 1 K;+K;

(7)

Polb in eqn (7a) is the position of the hinge circle at time t = O. Since the kinetic energy imparted
to the plate is maximum at t = 0 and decreases thereafter, (dp/dt) must be negative. Using this
condition in eqn (7) we get

(8)

This equation is valid for Gaussian distribution parameter c ;;;= y2. When c =y(2), polb =0·5.
For a blast which imparts a uniform velocity to the entire plate c tends to zero and the hinge
circle starts at the support[2]. The values of Polb for 0< C < y2 can be interpolated between 1
and 0·5.

The velocity field given by eqn (5) is integrated using eqn (6) and the condition that at r = p,
M, = M8= M80 to get the deftection of the plate up to the time t = tIas

for

for ~o,,;;;; r";;;; I

12M80 W( t) = l2M8o t +(I _!.) [.l.-_! _{~ (!.)2 +.l.-_! _!.}] -2c'l(,lb)2
IJ-Vo2b2 r, I IJ- VOb2 , b 2c 2 2 2 b 2c 2 2 b e

em :<:: !. eE.
b "'" b";;;; b

(9)

(10)

for (11)

where tr is the time when the hinge circle is located at a radius "r" which can be readily obtained
from the eqn (6).

Phase 2. (t l ,,;;;; t ,,;;;; t*)
The cumulative deflection of the plate in this phase can be written as

W(r,t)= W(r,tl)+0(t)(I-i) (12)
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where W(r, t I) given by eqns (9)-(11). The arbitrary function it(t) is determined using eqn (2) with
the conditions

Equation (12) thus reduces to

M,=Meo

M,=O

0(t1) = 0

0(t1) = Vo.

at
at

r=O

r= b

(13)

At time t = t* the plate comes to rest and velocity of the plate is zero. With this condition we get

The permanent deflection of the plate at t = t* is then given by

(14)

Case 2. (Meo > M,o)
As described earlier, the deformation of the plate is characterized by a plastically flowing

annulus surrounding a central rigid portion of the plate. The plastic flow of the annular region is
governed by the regime BC of the yield diagram (Fig. 3). At the centre of the plate
M, :::: Me =M,o because of symmetry. At the boundary of the rigid region r =Ph M, == M,o and
Me == Meo. Proceeding on the lines similar to the previous case we get the differential equation for
the motion of the hinge circle as

~2::b~ dt = e-C;/b)' [1- K1(f) +K/(fY-K/(fYJ [-1 +2c2 (f) +2c 2 (fY
- 2(f) -lOc

2 (fY +3(fY +6c
2(frJ dp (15)

where

l-K
KI=~'

Equation (15) is solved to get the position of hinge circle at any time "t" as,

t SIAI+A2-SIA3-A4
1;= SIAs+A6-S1A3-A4

where

(16)
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6 17K I K 1
2 54K/ 3K/ 81K(3

S3 = -1- (c?+ K I - 2(cf - (C)2- 4(C)4 +2(C)2- 4(C)4

S =S+K +15K1 _ K2 +llK/+3K/ +21K/
4 1 2(C)2 1 ( C)2 2(cf (C )4

S 3 K K 2 9K / 2K 3 27K 1
3

s = - - 5 1 - 1 - (C )2 + 1 - 2(C)2

S 3K SK 2 21K I
3

6= 1 + 1 + 2(cf

S7=3K/-SK I
3

S8= 3K1
3

A3 :=; erf (cpo/b)

A4=e-(c)2{polb)'S2 +S3(PO/~)+S4(Po/b)2 +Ss(polb)3+S6(Po/b)4+S7(Po/b f +S8(Po/bt
As = erf (CPI/b)

A6=e-C'(Pllb)'[S2+S3~+S4(~Y+Ss(~Y+S6(~)\S7(~IY+S8(~1)1

The analytical method of obtaining the deflections was found to be very complex for this case.
Hence a numerical method of integrating the velocity field from time t = 0 to t = t* was adopted.
The time t* at which the plate comes to rest is derived on the same lines as in Case 1to get,

where PI is determined from eqn (4).

NUMERICAL RESULTS AND CONCLUSIONS

The results of the analysis are presented in Figs. 5-9, in which the response of the plate for
different load distribution parameters as well as different degrees of orthotropy are compared.
The description of the spatial distribution of the blast as Gaussian facilitates the analysis to
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Fig. 5. Movementof hinges.
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Fig. 6. Deflection of tbe plate.
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Fig. 7. Movement of hinges.
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Fig. 8. Deflection of the plate.
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Fig. 9. Movement of hinges.

account for a variety of load distributions ranging from a pulse concentrated at the centre of the
plate to a uniformly distributed pulse over the entire plate. The choice of the directions of
orthotropy to be in the radial and tangential directions has considerably simplified the analysis.
However, it is easy to visualize this kind of anisotropy to be a consequence of some mechanical
fabrication technique; it is also possible to realise a similar situation in the case of plates with
appropriately spaced radial and circumferential stiffners. The behaviour of an orthotropic plate
with M,o> M80 is similar to that of an isotropic plate. For c == 0·1 which approximately
corresponds to a uniformly distributed impulse the deflection profile compares well with that of
Wang[l). For c == 1·5 to 1·7 which simulates aconcentrated impulse atthe centre the plate deforms
to the shape of an inverted cone if M,o > M80•

If the plate is stronger in the circumferential direction than in the radial direction (Le.
M80 > M,o) the deformed shape of the plate is found to be of the form of a frostrum of a cone with
a rigid flat portion at the centre. The exactness of the solution can be verified from the fact that it
is possible to construct at least one equilibrium stress field which does not violate the yield
condition in the central rigid region, e.g.

It may also be noted that all the relevant continuity conditions across moving and stationary
hinges are satisfied during all phases of motion of the plate.
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